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Abstract

Modern biomedical datasets, such as those found in genomic and proteomic
studies, often involve a large number of predictor variables relative to the number
of observations, pointing to the need for statistical methods specifically designed
to handle high-dimensional data. In particular, for a regression task, regularized
methods are needed to select a sparse model, that is, one that uses only a subset of
the large number of features available to predict a response. The presence of out-
liers in the data further complicates this task. Many existing robust and sparse
regression methods are computationally expensive when the dimensionality of
the data is high. Furthermore, most of these previously developed methods were
developed under the assumption that outliers occur casewise, which is not always
a realistic assumption in high-dimensional settings. We propose a sparse and
robust regression method for high-dimensional data that is based on regularized
precision matrix estimation. Our method can handle both casewise and cellwise
outliers in low- and high-dimensional settings. Through simulation studies, we
also compare our method to existing sparse and robust methods by evaluating
computational efficiency, prediction performance, and variable selection capabil-
ities.

Keywords: Robust regression; Cellwise outliers; Casewise outliers; High-dimensional
data.

1. Introduction
Modern applications of statistical modeling frequently involve high-dimensional data,
wherein the number of variables exceeds the sample size (p > n). Recent technological
advancements have facilitated the collection of these high-dimensional datasets. For
example, gene expression assays can measure tens of thousands of genes to identify
biomarker genes for a disease outcome. Typically, only a small subset of measured genes
are expected to be related to the outcome, so the true underlying model that we wish
to estimate is sparse. In high-dimensional settings, outliers are also common, further
compounding the challenge of achieving a high prediction accuracy while maintaining
model sparsity.

mailto:yitong.liu@stat.ubc.ca
mailto:gcohen@stat.ubc.ca


2

Several robust sparse regression estimators have been proposed in the literature, such
as Sparse Least Trimmed Squares (SparseLTS) (Alfons et al. 2013), the MM-LASSO
(Smucler and Yohai 2017), and the Penalized Elastic Net S-Estimators (PENSE) (Co-
hen Freue et al. 2018). However, most existing methods were designed and tested only
on casewise outliers. In high-dimensional settings, a large proportion of observations is
likely to contain outlying data values in at least one predictor variable, but the propor-
tion of predictors in a single observation that are outlying is typically small. Hence, it
is more realistic to characterize outliers using the cellwise outlier paradigm, first intro-
duced by Alqallaf et al. (2009). This cellwise outlier paradigm assumes that individual
entries, rather than rows, of the data are outlying, while the remaining entries in the
row are still useful for estimation and prediction.
The development of regression methods that are robust to cellwise outliers is a new and
ongoing area of research. Öllerer et al. (2016) develop an S-regression method that is
robust to cellwise contamination called the Shooting S. However, the Shooting S is not
suitable for high-dimensional data. Bottmer et al. (2022) propose the Sparse Shooting
S estimator that is robust to cellwise outliers, is feasible in p > n settings, and esti-
mates sparse coefficients. Filzmoser et al. (2020) propose a cellwise robust M (CRM)
regression estimator that allows for the estimation of regression coefficients in the pres-
ence of cellwise outliers while also detecting the cells that are deviating with respect to
the linear model. While the CRM method can handle cellwise outliers, it breaks down
when more than 50% of the cases contain outliers, which is a common situation in the
presence of cellwise contamination. Other developments in cellwise-robust estimation
lie mostly in outlier detection and cellwise-robust estimation of correlations, covariance
matrices, and precision matrices. Öllerer and Croux (2015) and Croux and Öllerer
(2016) use rank correlations to estimate a robust precision matrix. Raymaekers and
Rousseeuw (2021b) use the properties of product moments together with a transforma-
tion similar to that seen in Hampel et al. (1981) to estimate a robust correlation and
covariance matrix that is positive semi-definite and satisfies other desirable statistical
properties. The detecting deviating cells (DDC) method (Rousseeuw and Bossche 2018)
detects and imputes deviating cells or missing data values in a multivariate dataset,
and it does so by accounting for correlations between pairs of variables. DDC also uses
the Hampel-like transformation developed by Raymaekers and Rousseeuw (2021b) to
compute pairwise correlations efficiently, resulting in a fast algorithm for detecting and
imputing outliers in high dimensions.
Accounting for the conditional independence relationships between predictor variables
in a linear regression model can also improve prediction performance and unveil inter-
relationships between the variables that are not seen in existing regularized methods.
The Scout method of Witten and Tibshirani (2009) is a new approach for regularizing
linear regression that shrinks the inverse covariance matrix of the predictor variables. It
aims to uncover pairs of variables in a multivariate Normal model that are conditionally
independent while also estimating shrunken or sparse regression coefficients.
While the Scout method has been shown to have superior prediction performance com-
pared to other regularized methods, it relies on non-robust sample covariance estimates,
and is therefore not robust to outliers.
We propose a new generalized robust and sparse covariance-regularized regression
framework called RobScout. It combines the DDC method with covariance-regularized
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coefficient estimation by the Scout method, and is robust to cellwise and casewise out-
liers. RobScout is also computationally efficient in high-dimensional settings, and is
adaptable for realistic correlation structures between predictor variables.

2. The RobScout Method
Let X denote an n× p matrix of predictor variables, and let y be a length-n response
vector. For each observation i, with i = 1, . . . , n, let xi be the length-p vector denoting
the ith row of X, and let yi denote the ith entry of y.
We consider a regression setup where we aim to estimate coefficients β = (β1, . . . , βp)T

from the following model:

yi = xT
i β + ei (1)

where the ei’s are noise terms. Least Squares regression estimates β by minimizing the
sum of squared residuals:

β̂ = argmin
β

n∑
i=1

(
yi − xT

i β
)2

, (2)

and when n > p, its closed form can be written as β̂ = (XTX)−1XTy. However,
when p > n, XTX is not invertible, so the least squares estimate is not unique. The
presence of outliers further complicates the issue. In these high-dimensional cases,
regularization is required to compute an estimate of the coefficients. Typically, regu-
larized regression methods add a penalty to the sum of squared residuals in Equation 2;
two examples are LASSO (Tibshirani 1996) and Ridge regression (Hoerl and Kennard
1970). However, another way to introduce parsimony into the estimated model is by
covariance-regularization.

2.1. Overview of Covariance-Regularized Regression
Witten and Tibshirani (2009) introduce a covariance-regularized regression framework
that penalizes the log-likelihood of the data under Normality assumptions. The method,
called the Scout procedure, takes advantage of an alternative way of writing the closed
form solution of Equation 2.
To outline the Scout procedure, we introduce some more notation. Let X̃ = (X y) be
an n×(p+1) matrix, where the columns of X̃ are assumed to be centered and scaled. Let
Σ denote the population covariance matrix of X̃, S denote the sample covariance matrix
of X̃, and Θ = Σ−1 denote the population inverse covariance (population precision
matrix) of X̃. We write S, Σ, and Θ as block matrices as follows:

S =
(

SXX SXy

ST
Xy Syy

)
, Σ =

(
ΣXX ΣXy

ΣT
Xy Σyy

)
, and Θ =

(
ΘXX ΘXy

ΘT
Xy Θyy

)
. (3)

One can rewrite the closed form for Least Squares solution β̂ = (XTX)−1XTy using
only components of a precsion matrix estimate:

β̂ = −Θ̂Xy/Θ̂yy. (4)
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This follows from the result of inverting a block matrix, as seen in (Mardia et al. 1979).
Hence, to estimate regression coefficients, it is sufficient to estimate a precision matrix
for X̃. For high-dimensional data, we can estimate a shrunken precision matrix, and
consequently, shrunken coefficients, by penalizing the entries of Θ.
The Scout procedure by Witten and Tibshirani (2009) estimates a regularized precision
matrix using Lp penalties, and uses it to compute β̂ by Equation 4 in a procedure with
two regularization steps. We outline the procedure below:

1. Estimate a shrunken ΘXX :

Θ̂XX = argmax
ΘXX

{
log (det (ΘXX))− tr (SXXΘXX)− λ1 ∥ΘXX∥p1

}
. (5)

2. Estimate a shrunken Θ conditional on the Θ̂XX obtained in the first step:

Θ̂ = argmax
Θ

{
log (det (Θ))− tr (SΘ)− λ2

2 ∥Θ∥p2

}
, (6)

where the top-left p × p block matrix of Θ̂ is constrained to equal the Θ̂XX

solution from Step 1.

3. Compute β̂ = −Θ̂Xy/Θ̂yy.

4. Scale the coefficients by computing β̂⋆ = cβ̂ where c is the coefficient for the
regression of y onto Xβ̂.

This procedure is denoted by Scout(p1, p2), where p1 and p2 are the Lp penalties applied
in the first and second steps, respectively. A • is used in place of p1 and/or p2 when
λ1 = 0 or λ2 = 0. For example, Scout( • , 1) denotes the Scout procedure with no
regularization in the first step, and an L1 penalty in the second step.
In this paper, we are primarily interested in special cases where in Step 1, we have one
of { p1 = 1, p1 = 2, λ1 = 0 } and in Step 2, we have one of { p2 = 1, λ2 = 0 }.

2.2. Robust Covariance-Regularized Regression
The Scout procedure relies on non-robust estimates of the covariance and hence preci-
sion matrices, so its coefficient estimates are negatively affected by outliers of any kind.
Rousseeuw and Bossche (2018) recently proposed a method for detecting and imputing
cellwise outliers in multivariate data analysis problems called detecting deviating cells
(DDC). DDC computes pairwise correlations between variables in the data to predict
the value of each cell, and flags cells with predicted values that deviate from their ac-
tual values. It is also the first method that can detect cellwise outliers that are not
necessarily marginally outlying.
We propose RobScout, a robust extension of the Scout method. We follow the nota-
tion introduced by Witten and Tibshirani (2009) and use RobScout(p1, p2) to denote
RobScout with Lp penalties p1 and p2, respectively, in the first and second precision
matrix estimation steps. We outline the steps of RobScout(p1, p2) below:
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1. Impute outliers with DDC: Apply the DDC algorithm to X̃ to detect and
impute cellwise outliers, as described by Rousseeuw and Bossche (2018). Let
X̃imp denote the resulting output, which is the destandardized matrix containing
the imputed values of the outliers in X̃. Note that we include the response vector
in the input to DDC in order to also detect outliers in the subspace of the response
paired with each predictor variable.

2. Standardize the data: Standardize the columns of X̃imp using their means and
standard deviations to obtain Z̃imp, which has entries

z̃ij = x̃ij −mean(x̃j)
sd(x̃j)

,

where j = 1, . . . , p + 1 and x̃j denotes the jth column of X̃imp. Classical mean
and standard deviation estimators are used to standardize X̃imp since X̃imp no
longer contains the outliers detected by DDC.

3. Estimate regression coefficients using the Scout procedure: Apply the
Scout procedure as described by Witten and Tibshirani (2009) to estimate the
coefficients the regression of x̃p+1 (the imputed response vector) on (x̃1 · · · x̃p)
(the imputed predictor matrix).

4. Estimate the intercept term: Compute β̂0 as follows:

mean(x̃p+1)− sd(x̃p+1)
p∑

j=1

mean (x̃j)
sd(x̃j)

β̂j,

where x̃j is the jth column of X̃imp.

3. Optimization Algorithm
The Scout procedure involves two regularization parameters, but an efficient optimiza-
tion algorithm for choosing the best pair of parameters is not currently implemented.
An obvious selection method is to cross-validate over a grid of nλ1 × nλ2 regularization
parameters, where nλ1 and nλ2 denote the length of the path for λ1 and λ2, respsec-
tively. However, optimizing over a grid would be computationally very slow, especially
when p > n or when p1 = 1. In this section, we propose two efficient methods by
which the penalty parameters can be chosen, depending on the penalty function on the
precision matrix in each step.

3.1. Regularization Paths for Scout
First, consider the case when p1 = 1. Then Step 1 of the Scout procedure as shown in
Section 2.1 reduces to estimating ΘXX by the GLASSO. Banerjee et al. (2008) show
that for sufficiently large λ1, Θ̂XX is a diagonal matrix with elements 1/

(
λ1 + xT

i xi

)
.

In particular, Θ̂XX is a diagonal matrix when λ1 ≥
∣∣∣xT

i xj

∣∣∣ for all i ̸= j, i.e., when
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λ1 ≥
∥∥∥XTX

∥∥∥
∞

. Hence, we define λ1max to be the smallest value of λ1 that shrinks all
off-diagonal elements of Θ̂XX to zero. Empirically, the lower bound for λ1 max is much
smaller than

∥∥∥XTX
∥∥∥

∞
, so we implement a descending search algorithm for finding a

smaller λ1 max that reduces the search space by 20% on each iteration for at most 100
iterations.
Now, consider the case when p1 = 2. Witten and Tibshirani (2009) show that the first
step in the Scout has a closed form solution. Let Un×pDp×pVT

p×p be the singular value
decomposition of X, and let di be the diagonal entries of D with d1 ≥ d2 ≥ · · · ≥
dr > dr+1 = · · · = dp = 0 where r = rank (X) ≤ min(n, p). Then Step 1 in the Scout
procedure is equivalent to solving

Θ̂−1
XX − 2λ1Θ̂XX = XTX. (7)

Equation 7 has the following closed form solution:

Θ̂−1
XX = V

(
D2 + D̃2

)
VT, (8)

where D is the diagonal matrix from the singular value decomposition of X, and D̃2 is
a p× p diagonal matrix with ith diagonal entry equal to 1

2

{
−d2

i +
√

d4
i + 8λ1

}
. Now,

since Θ̂−1
XX obtained in Equation 8 cannot be shrunken to a diagonal matrix by picking

a sufficiently large λ1, we consider λ1 max in the case of p1 = 2 to be the same λ1 max as
in p1 = 1.
Next, we consider the case when p2 = 1. Since the second regularization step in the
Scout depends on the first, we define λ2 max for a particular value of λ1 that results in
a particular estimate Θ̂XX from the first step in the Scout procedure. Setting p2 = 1
corresponds to applying a LASSO penalty on the last column and last row of Θ, and
results in a sparse β̂ estimate. Hence, we define λ2 max to be the smallest value of λ2
that shrinks all entries of β̂ to zero. Witten and Tibshirani (2009) show that when
p1 = 1, λ1 = λ1 max, and p2 = 1, the coefficient estimates are given by

β̂i = 1
λ1 + 1sign

(
xT

i y
)

max
(

0,
∣∣∣xT

i y
∣∣∣− λ2

2

)
. (9)

In this situation, we can see that the smallest value of λ2 that shrinks β̂i to zero for
all i = 1, . . . , p is the λ2 value such that

∣∣∣xT
i y
∣∣∣ − λ2

2 = 0 for all i = 1, . . . , p, which is
λ2 max = 2

∥∥∥XTY
∥∥∥

∞
. However, since the λ2 max value depends on the value of λ1, we

proceed by the same descending search procedure for empirically computing a smaller
λ2 max value as we did with λ1 max when p1 = 1.
When performing cross-validation, we consider a logarithmically-spaced sequence of λ1
values from 0.1λ1 max to λ1 max. For λ2, we follow the path selection strategy of Friedman
et al. (2010) and consider a sequence of logarithmically-spaced values from 0.001λ2 max
to λ2 max. Each sequence is chosen to be length 100.

3.2. A Stepwise Optimization Approach for Scout(1,1)



Journal of Data Science, Statistics, and Visualisation 7

When p1 = 1, Step 1 of the Scout procedure is equivalent to the GLASSO method for
precision matrix estimation. Yuan and Lin (2007) propose a criterion like the Bayesian
information criterion (BIC) for sparse graphical model selection, given in Definition
1. The chosen penalty parameter is then the one that minimizes the given BIC-like
criteria.

Definition 1. Let Σ be a covariance matrix, and let Θ̂(λ) be a precision matrix esti-
mate for Σ−1 where the value of the penalty is λ. Let θ̂ij denote the entry of Θ̂ (λ) at
row i and column j for i, j = 1, . . . , p. Let Σ̂ denote the maximum likelihood estimate
for Σ. Suppose Σ̂ and Θ̂(λ) were both estimated from a sample of size n. Then the
Bayesian Information Criterion (BIC) for Graphical Model Selection is

BIC (λ) = − log
(
det

(
Θ̂(λ)

))
+ tr

(
Θ̂ (λ) Σ̂

)
+ log n

n

∑
i≤j

êij(λ), (10)

where

êij =

0 if θ̂ij = 0
1 otherwise

. (11)

When p1 = 1, instead of optimizing over a grid of nλ1 × nλ2 , we proceed in a stepwise
manner. We first select the λ1 value which minimizes the BIC of Θ̂(λ1). We then fix
that value of Θ̂ and select the λ2 value which minimizes the cross-validation error. This
stepwise approach is linear rather than quadratic in the number of (nλ1 , nλ2) pairs over
which it needs to search; it requires a total of nλ1 + nλ2 model fits, whereas a full grid
search would require nλ1 ×nλ2 model fits. The full details of the stepwise approach are
described in Algorithm 1.

Algorithm 1 Stepwise approach for selecting optimal λ1 and λ2 in cross-validation
when p1 = 1 and p2 = 1

1: Compute λ1 sequence as described in Section 3.1.
2: Select the model Θ̂ (λ1) that minimized BIC (λ1).
3: Using the Θ̂ (λ1) estimate obtained in Step 2, compute a sequence of λ2 values as

described in Section 3.1.
4: Compute the β̂ estimate for each value of λ2 and pick the one that minimizes the

cross-validation error.

3.3. An Alternating Optimization Approach for Scout(2,1)
When p1 = 2, we have seen that the closed form solution for ΘXX satisfies Equation
7, and the closed form for Θ−1

XX is given by Equation 8. However, it is not guaranteed
that the right-hand side of Equation 8 is invertible, so we may not be able to select
λ1 by minimizing the BIC of Θ̂XX as in the previous section. Instead, we propose an
alternating algorithm that is efficient, and empirically found to converge in many fewer
steps than nλ1 + nλ2 . The algorithm alternates between searching for a λ1 value for a
fixed λ2, and searching for a λ2 value for a fixed λ1, with the goal of minimizing the
cross-validation prediction error based on the resulting β̂ estimate for each pair of λ1
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and λ2 values considered. The full details of the algorithm are described in Algorithm
2.

Algorithm 2 Alternating optimization approach for selecting optimal λ1 and λ2 in
cross-validation when p1 = 2 and p1 = 1

1: Compute λ1 sequence as described in Section 3.1.
2: Initialize λ1 ← λ1 max
3: Initialize diff ← 1, n_iter ← 0
4: while (diff > tol) OR (n_iter ≥ max_iter) do
5: Compute Θ̂XX for λ1
6: Compute λ2 sequence based on Θ̂XX

7: Compute β̂ based on current λ2 and λ2
8: Set λ2 to be the one minimizing the CV error based on β̂
9: Update n_iter ← n_iter +1

10: Find λ1 minimizing the CV error with λ2 fixed to be the value from line 8
11: Compute β̂ using λ1 and λ2 from line 10
12: Update diff ← |current CV error− previous CV error|
13: Update n_iter ← n_iter +1

return λ1, λ2, β̂

4. Simulation Studies

4.1. Estimators Considered
We consider robust and non-robust estimators in our simulation study. Table 1 summa-
rizes the estimators we consider. We also include the Oracle estimator in all settings,
which uses the true coefficient values for that setting. In settings where n > p, we also
include the OLS estimator.

Robust Non-robust
RobScout( • ,1) Scout( • ,1)
RobScout(1,1) Scout(1,1)
RobScout(2,1) Scout(2,1)
SparseLTS LASSO
PENSE-LASSO EN(0.5)

Table 1: Robust and non-robust methods under comparison in simulation settings.
PENSE-LASSO is the Penalized Elastic Net S-Estimator (Cohen Freue
et al. 2018) with LASSO Penalty, SparseLTS is the Sparse Least Trimmed
Squares estimator (Alfons et al. 2013), and EN(0.5) is the Elastic Net
estimator with mixing parameter 0.5.

For PENSE-LASSO, we use the R implementation available through the package pense
(Kepplinger et al. 2023), and we use the robust τ -scale (Yohai and Zamar 1988) to mea-
sure prediction performance in 5-fold cross-validation to select the penalty parameter.
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For SparseLTS, we use the R implementation available through the package robustHD
(Alfons 2021), and use the modified Bayesian Information Criterion (BIC) described in
Alfons et al. (2013) to select the penalty parameter. Furthermore, we fix the trimming
proportion at 0.25 to achieve a breakdown point of 25%. For LASSO and Elastic Net,
we use the glmnet R package (Friedman et al. 2010), and select the penalty parameter
using 5-fold cross-validation.
For all RobScout and Scout methods, we use nλ1 = 100 and nλ2 = 100 and also
use 5-fold cross-validation to select λ1 and λ2. We use the R implementation available
through the scout package, along with the optimization algorithms described in Section
3. We also make modifications to certain functions in the scout package to improve
computation time, including the use of the huge R package (Jiang et al. 2023) in place of
the glasso R package (Friedman et al. 2019) for computing precision matrix estimates
by the GLASSO algorithm. The details of these modifications are documented in
Appendix A.
Finally, for all methods, we use the corresponding package implementation to standard-
ize the data and estimate an intercept term. For all data generation models presented
in the next section, the true intercept term is assumed to be zero.

4.2. Data Generation
Our simulation studies examine four data generation settings and three outlier gener-
ation settings. The true relationship between the predictor variables and the response
is given by the following linear regression model:

yi = xT
i β + ei, ei ∼ N(0, σ2), i = 1, . . . , n, (12)

where n is the number of observations, and β is a length-p vector of true coefficients. In
the following sections, let X =

(
xT

1 , . . . , xT
n

)T
denote the n× p matrix of observations.

Clean Data Models
We consider different dimensionalities and correlation structures of predictor variables
in each underlying clean data generation model. In particular, we are interested in cases
where variables have either a block correlation structure or a first-order autoregressive
(AR1) structure. In all settings, a subset of the true coefficients are non-zero.

(1) The first setting is given by Example (d) in Zou and Hastie (2005). We generate
p = 40 predictors with sample size n = 50, where the true regression coefficients
are

β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

) (13)

and σ = 15. The predictors are generated from the following latent variable
model:

Xi = Z1 + ex
i , Z1 ∼ N(0, 1), i = 1, . . . , 5

Xi = Z2 + ex
i , Z2 ∼ N(0, 1), i = 6, . . . , 10

Xi = Z3 + ex
i , Z3 ∼ N(0, 1), i = 11, . . . , 15

Xi ∼ N(0, 1), Xi i.i.d., i = 16, . . . , 40
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We use ex
i to denote the error term in the generation of predictor i (in contrast to

the error term in Equation 12). The ex
i are i.i.d. N(0, 0.01), i = 1, . . . , 15. In this

model, the first 15 variables are grouped into 3 blocks of 5 correlated variables.
The remaining 25 variables are noise features.

(2) The second setting is identical to the first one, but the number of predictors is
increased to p = 200, and the number of predictors in each correlated block is
increased to 20. The true regression coefficients in this setting are:

β = (3, . . . , 3︸ ︷︷ ︸
60

, 0, . . . , 0︸ ︷︷ ︸
140

) (14)

(3) The third setting is given by Example 2 in (Zou and Zhang 2009). In this setting,
n = 100, p = 81, and σ = 6. The true regression coefficients are:

β = (3, . . . , 3︸ ︷︷ ︸
27

, 0, . . . , 0︸ ︷︷ ︸
54

) (15)

The predictors are generated from a multivariate Normal distribution where the
covariance matrix follows an AR1 structure with correlation 0.75, i.e., X is gen-
erated from the Np(0, Σ) distribution, where Σjk = 0.75|j−k| for j, k = 1, . . . , 81.

(4) The fourth setting has p = 51 predictors with n = 200 observations, and σ = 6.
The true regression coefficients are:

β = (3, 3, 3, 0, 0, 0, . . . , 0, 0, 0, 3, 3, 3) (16)

The predictors are generated from a multivariate Normal distribution where the
covariance matrix follows an AR1 sturcture with correlation 0.9, i.e., X is gener-
ated from the Np(0, Σ) distribution, where Σjk = 0.9|j−k| for j, k = 1, . . . , 51. We
note that in this setting, non-zero coefficients are placed in intervals. Due to the
AR1 correlation structure, predictors that are farther apart (i.e., j and k with
larger absolute differences) are less correlated. Hence, non-zero coefficients that
are spaced apart are more difficult to select.

Contamination
We consider three main models of contamination: clean data, casewise contamination,
and cellwise contamination. We use ϵ to denote the probability of data being contam-
inated. Under the clean data model, ϵ = 0. Under casewise contamination, ϵ is the
probability of a row of X being outlying, so the expected number of rows in X that
deviate from the clean data distribution is ⌊ϵn⌋. Under cellwise contamination, ϵ is the
probability of a cell being outlying, so the expected number of outlying cells in each
row of X is ⌊ϵp⌋. Finally, we consider two types of cellwise contamination: one in which
cells are marginally outlying, and another in which cells are outlying with respect to
the subspace of the contaminated predictors in each row.

(C1) Clean data: The data are generated by the settings in the previous section.
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(C2) Casewise contamination: We follow the contamination model by Maronna (2011),
which is controlled by two constants klev and kslo. We use klev to control the
leverage of the contamination in the predictors, and kslo to control the magnitude
and position of contamination in the response. We introduce contamination in
the first m = ⌊ϵn⌋ observations, where ϵ ∈ [0, 1] is the proportion of contaminated
observations. We fix ϵ = 0.1.
We introduce leverage points as follows:

x(cont)
i = ηi + klev√

a⊺Σ−1a
a, i = 1, . . . , m (17)

where ηi ∼ Np (0, 0.12Ip) and a = ã − 1
p
ã⊺1p. Here, ã is a length-p vector with

entries ãj ∼ U(−1, 1), j = 1, . . . , p.
The response is contaminated by altering the regression coefficients as follows:

yi = x(cont)
i β(cont) with β

(cont)
j =

βj (1 + kslo) if βj ̸= 0
kslo∥β∥∞ otherwise

, i = 1, . . . , m (18)

where ∥β∥∞ is the largest entry in β. Note that if kslo = 0, no outliers are
introduced in the response.
To evaluate the effectiveness of robust methods against this contamination setting,
we follow Cohen Freue et al. (2018) and fix klev at 2 while we vary kslo in a sequence
of 19 values. We construct a logarithmically spaced sequence of length 15 from 1
to 500 (inclusive), and another logarithmically spaced sequence of length 5 from
500 to 2000. Since 500 is included twice, we discard one occurence in the final
sequence.

(C3a) Cellwise contamination (marginally outlying cells): Following the contamination
model by Lafit et al. (2022), we contaminate cells in X by replacing them with
observations generated from i.i.d. Normal random variables with higher means
and lower variances. That is, for each observation xi, we replace it with

x(cont)
i = xi (I− b) + zib (19)

where b is a diagonal matrix with entries bj that are drawn independently from
the Bernoulli(ϵ) distribution, j = 1, . . . , p. Let k = ∑p

j=1 bj be the number of
contaminated observations in the row xi. In Equation 19, zi is generated from
the N(µk, σ2Σk) distribution with σ = 0.2, where µk is a mean vector of length
k where each entry is 10, and Σk is the true covariance of the clean data model
restricted to the k contaminated predictors.
We consider contamination probabilities ϵ = 0.1, 0.25. Moreover, under models
where the true vector of coefficients is sparse, we consider different combinations
of contamination fractions in the active and inactive predictors, where active
predictors are those with non-zero coefficients and inactive predictors are those
with zero-valued coefficients. That is, we consider every pair (ϵactive, ϵinactive) where
ϵactive ∈ {0.1, 0.25} and ϵinactive ∈ {0.1, 0.25}.
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(C3b) Cellwise contamination (correlation outliers): To generate cellwise outliers that
are not marginally outlying, we follow the contamination framework in (Ray-
maekers and Rousseeuw 2021a).
In each column of the data matrix, we draw nϵ indices to be contaminated. For
each row (x1, . . . , xp) with at least one contaminated data cell, let k be the number
of contaminated cells in that row. Let K = {j(1), . . . , j(k)} denote the ordered
indices of those k contaminated cells in the row, and let the corresponding cells at
the indices in K be the k-dimensional vector

(
xj(1), . . . , xj(k)

)
. We replace these

cells by the following k-dimensional row vector:

v = γ
√

ku⊺

MD (u, µk, Σk) , (20)

where µk and Σk are the true mean and covariance of the clean data model
restricted to the indices in the set K, u is the eigenvector of Σk with the smallest
eigenvalue, and MD is the Mahalanobis distance. This contamination model
generates points that are outlying the subspace of coordinates of K, but that
are not marginally oulying. The value γ controls the magnitude of outlyingness
in the direction of u, and as γ gets larger, the outliers become more marginally
outlying.
In this setting, we consider γ = 1, 5, 10, 15, 20 and contamination probabilities
ϵ = 0.01, 0.05, 0.1, 0.2.

4.3. Evaluation Metrics
We generate a clean test set of n(test) = 1000 to evaluate model performance. Let X(test)

and y(test) denote the observed predictor predictor variables and response variables in
the test set, respectively. Let ŷ be the vector of predicted response values on the test
set.
We evaluate a method’s prediction performance using the Root Mean Squared Predic-
tion Error (RMSPE) between actual and predicted response values, standardized by
the true standard deviation of the error term in the underlying model, σ:

RMSPE
(
ŷ, y(test)

)
σ

= 1
σ

√√√√ 1
n(test)

n(test)∑
i=1

(
y

(test)
i − ŷi

)2
. (21)

Hence, a RMSPE/σ value of 1 indicates perfect prediction performance and is the best
possible value.
We also evaluate each method’s variable selection performance by considering the sen-
sitivity, specificity, and the F-measure of the selected coefficients.

SENS
(
β̂, β

)
= # { j : β̂j ̸= 0 and βj ̸= 0 }

# { j : βi ̸= 0 }

SPEC
(
β̂, β

)
= # { j : β̂j = 0 and βj = 0 }

# { j : βj = 0 }

F-measure
(
β̂, β

)
=

2× SENS
(
β̂, β

)
× SPEC

(
β̂, β

)
SENS

(
β̂, β

)
+ SPEC

(
β̂, β

)
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An ideal method will have high variable selection sensitivity and specificity, resulting
in a high F-measure as well.

4.4. Simulation Results
In this section we present results from each simulation setting. This section is organized
by contamination model.

Casewise Contamination (C2)
Under casewise contamination, we see that all non-robust estimators, except for the
Oracle estimator, break down in their prediction performance as kslo is increased from
1 to 2000. However, all RobScout estimators maintain a consistent prediction perfor-
mance throughout, as shown in Figure 1a. Notably, at least one RobScout method
shows similar or superior prediction performance to robust competitors. Their variable
selection performances remain high even as kslo is increased toward the highest value,
with at least one RobScout method outperforming both PENSE and SparseLTS. This
is demonstrated even in high-dimensional cases, such as in data setting 2 where n = 50
and p = 200.

Cellwise Contamination with Marginally Outlying Cells (C3a)

Cellwise Contamination with Correlation Outliers (C3b)

4.5. Runtime

5. Discussion
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(a) Prediction Performance (b) Variable Selection Performance

Figure 1: Prediction (left) and variable selection (right) performances of non-robust
and robust methods under Contamination (C2) for kslo values ranging
from 1 to 2000. Subfigure row labels indicate data generation setting.
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(a) Prediction Performance (b) Variable Selection Performance

Figure 2: Prediction (left) and variable selection (right) performances of non-robust
and robust methods under Contamination (C3a) for ϵ = 0, 0.1. Note that
ϵ = 0 corresponds to no contamination, i.e., clean data (C1).
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(a) Prediction Performance (b) Variable Selection Performance

Figure 3: Prediction (left) and variable selection (right) performances of non-robust
and robust methods under Contamination (C3a) for ϵ = 0.01, 0.05.
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