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Abstract: In large-scale quantitative proteomic studies, scientists

measure the abundance of hundreds or thousands of proteins from the
human proteome in search of novel biomarkers for a given disease.
Despite current innovations in biomedical technologies, advanced sta-
tistical and computational methods are still required to harness the
rich information contained in these large and complex datasets. While
penalized regression estimators can be used to identify potential
biomarkers among a large set of molecular features, it is well-known
that the performance and statistical properties of the selected model
depend on the loss and penalty functions used to construct the regu-
larized estimator. For example, the presence of outlying observations
in the data can seriously affect classical estimators that penalize the
square error loss function. Similarly, the choice of the penalty func-
tion in these estimators is important to be able to preserve groups
of correlated proteins in the selected model. Thus, in this paper we
propose a new class of penalized robust estimators based on the elas-
tic net penalty, which can be tuned to keep groups of correlated
variables together as they enter or leave the model, while protecting
the resulting estimator against possibly aberrant observations in the
dataset. Our robust penalized estimators have very good robustness
properties and are also consistent under relatively weak assumptions.
In this paper we also propose an efficient algorithm to compute our
robust penalized estimators and we derive a data-driven method to
select the penalty term, which is a critical part of any application
with real data. Our numerical experiments show that our proposals
compare favorably to other robust penalized estimators. Noteworthy,
our robust estimators identify new potentially relevant biomarkers of
cardiac allograft vasculopathy that are not found with non-robust
alternatives. Importantly, the selected model is validated in a new
set of 52 test samples, achieving an area under the receiver operating
characteristic curve (AUC) of 0.85.
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2 G.V. COHEN FREUE ET AL.

1. Introduction. Biomarkers are indicators of pathogenic processes or
responses to therapies. Recent advances in various -omics technologies allow
for the simultaneous quantification of thousands of molecules (e.g., genes
and proteins) revolutionizing the way that scientists search for molecular
biomarkers. For example, in the search of biomarkers of a given disease,
mass spectrometry shotgun proteomic techniques can be used to measure
the abundance of hundreds of proteins that have not been previously hypoth-
esized to be associated with that disease, which can result in the discovery of
novel biomarkers. To date, the innovation of technical resources available for
-omic biomarker studies is well recognized. Nevertheless, the development of
statistical and computational methods to analyze large and complex -omics
datasets is of fundamental importance to succeeding in the validation and
clinical implementation of biomarker discoveries.

In particular, in this paper we use linear regression to model the asso-
ciation between hundreds of plasma protein levels and the obstruction of
the left anterior descending artery measured in heart transplant patients to
identify proteomic biomarkers of cardiac allograft vasculopathy (CAV). CAV
is a major complication suffered by 50% of cardiac transplant recipients be-
yond the first year after transplantation, which is currently diagnosed with
highly invasive technics, including cardiac angiography and intravascular ul-
trasound (IVUS). Identifying these plasma proteomic biomarkers can result
in the development of minimally invasive and clinically useful blood tests
to diagnose CAV and improve patient care options. Although hundreds of
proteins were measured and analyzed in these patients, only a few proteins
are expected to be associated with the observed artery obstruction, resulting
in a sparse regression model (i.e., most regression coefficients equal to zero).

Penalized regression estimators have been proposed to identify a rela-
tively small subset of explanatory variables to obtain good predictions for
a response when the number of covariates is large (even larger than the
number of observations) (Tibshirani, 1996; Zou and Hastie, 2005). However,
most of these estimators penalize the square error loss function and are thus
extremely sensitive to outliers. Since -omics datasets usually contain outly-
ing observations associated, for example, with technical problems in sample
preparation or patients with rare molecular profiles, the use of a robust pe-
nalized estimators is essential to effectively interrogate the rich information
contained in the human proteome.

Although many robust regression methods have been proposed in the
literature (see Maronna, Martin and Yohai (2006) for a review), the de-
velopment of penalized robust estimation methods is still in its early stages.
Most of the existing work is focused on different penalized versions of convex
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M-estimators (Fan and Peng, 2004; Fan, Li and Wang, 2017), thus not resis-
tant to high leverage outliers commonly observed in large datasets. The first
highly robust penalized estimators is the RLARS estimator (Khan, Aelst
and Zamar, 2007), a modification of the Least Angle Regression method
(Efron et al., 2004) where sample correlations are replaced with robust coun-
terparts. A more recent proposal, SparseLTS (Alfons, Croux and Gelper,
2013), is an L1-regularized version of the Least Trimmed Squares regression
estimator Rousseeuw (1984), which can be shown to have good robustness
properties. Both of these estimators are useful for variable selection, but can
only be tuned to be either highly robust or highly efficient under the normal
model (Yohai, 1987).

To overcome these limitations, Maronna (2011) has recently proposed an
MM-estimator with a ridge penalty to ensure robustness to outliers and
leverage points, as well as high efficiency under the normal model. Although
the proposed MM-Ridge regression estimator has good prediction perfor-
mance even in contaminated samples, it does not produce sparse solutions
and hence cannot be used for variable selection. To address this issue, Smu-
cler and Yohai (2017) have recently proposed a penalized MM-LASSO esti-
mator. However, as previously shown for the classical LASSO (Efron et al.,
2004), their MM-LASSO estimator cannot select more variables than the
number of available observations. In addition, if the data contain groups of
highly correlated explanatory variables, LASSO tends to randomly select
only one variable within each group ignoring the relevance of other covari-
ates.

In -omics datasets the number of measured features is usually much larger
than the number of samples, and genes belonging to the same pathway or bi-
ological process form groups of correlated variables. Thus, the limitations of
Ridge and LASSO methods can jeopardize the discovery of clinically useful
biomarkers. In this study, we combine robust loss functions with the elastic
net penalty, a linear combination between the L2-penalty of Ridge and the
L1-penalty of LASSO, which can be tuned to estimate models with different
levels of sparsity and a complex correlation structure among covariates. The
resulting penalized robust regression estimators are not limited by the num-
ber of available samples and can select groups of correlated proteins with
common functional objectives or cellular mechanisms, while being protected
against possible outliers in the dataset.

First, we derive the Penalized Elastic Net S-Estimator (PENSE) by pe-
nalizing a robust (squared) scale function of the residuals, instead of the
usual sum of squared residuals. Second, to get an estimator that is highly
robust and at the same time efficient, we use PENSE to initialize a penal-
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4 G.V. COHEN FREUE ET AL.

ized M-regression estimator with the same penalty as that used by PENSE.
We call the resulting estimator PENSEM. The proposed estimators can be
seen as robust versions of the classical elastic net (EN) class of estimators
that contains Ridge and LASSO as special cases (Zou and Hastie, 2005). In
particular in this paper, we use our robust estimators to identify potentially
relevant proteomic biomarkers of cardiac allograft vasculopathy from a set
of 37 plasma samples from heart transplant patients, collected at 1 year af-
ter transplantation. However, our estimators are applicable to a wide range
of complex high-dimensional datasets commonly found in data science to
select explanatory variables while shrinking their estimated coefficients to
improve the prediction of the response of interest.

In Sections 2 and 3 we present our elastic net regularized robust estima-
tors, along with efficient algorithms to compute them. In Section 4, we show
that our estimator is robust, in the sense of not being unduly influenced by
a small proportion of potentially atypical patients. Before we discuss our
findings in the cardiac allograft vasculopathy study in Section 6, we explore
the properties of our estimator with a simulation study, reported in Sec-
tion 5. Final remarks and conclusions can be found in Section 7. The on-line
Supplementary Material contains many technical details and proofs.

2. PENSE: a new robust penalized regression estimator. As
mentioned before, the relationship between molecular features and a dis-
ease of interest can be modelled by a linear regression model:

(1) yi = µ+ x⊺
iβ + εi, i = 1, . . . , n,

where µ ∈ R, and β ∈ Rp are the regression coefficients to be estimated from
the observed data. In a biomarkers discovery study, the response variable,
yi ∈ R, measures the status of a disease (e.g., stenosis of a coronary artery)
for the i-th patient and the set of covariates, xi = (xi1, . . . , xip)

⊺ ∈ Rp, are
the measurements of all features (e.g., protein levels). In particular, in the
proteomic case study analyzed in this paper, the number of patients (n)
is 37 and the number of measured proteins (p) is 81. We assume that the
response is centered and the covariates are standardized. Given the potential
presence of outliers in our dataset, we center the data using column-wise
medians and standardize each variable to have a median absolute deviation
(from the median) equal to 1.

Although thousands of molecular features may be measured and analyzed
in -omics studies, only a few are usually expected to be associated with a
given disease. In other words, we expect this model to be sparse with many
coefficients equal to zero, which leads us to consider regularized regression
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estimators. In particular, since proteomic biomarkers usually form groups
of correlated predictors, we focus on elastic net penalties that tend to keep
such groups of variables together as they enter or leave the model.

Furthermore, to protect the resulting estimator against atypical obser-
vations commonly present in -omics studies (e.g., due to technical issues
in the sample preparation steps, or the presence of patients with unusual
molecular profiles), instead of penalizing the classical variance of the resid-
uals (square error loss function), we penalize the square of a robust residual
scale estimator. More specifically, we propose to use a regularized version
of an S-estimator (Rousseeuw and Yohai, 1984) that has good robustness
properties to select the most relevant variables in the model and predict the
response of interest.

Our new robust penalized estimator, which we call PENSE, is defined as
the minimizer

(
µ̂PS , β̂

PS
)

of the penalized loss function

(2) LPS(µ,β) = σ (µ,β)2 + λS

(
1

2
(1− α)||β||22 + α||β||1

)
,

where σ (µ,β) is a robust residual scale estimator, λS ≥ 0 is the penalty
level, and α ∈ [0, 1] determines the desired combination of the L1- and
L2-penalties. In particular, if α = 1, the estimator becomes a LASSO S-
estimator, and if α = 0, it becomes a Ridge S-estimator. The parameters λ
and α determine the size of the identified model and can be chosen using
different optimization criteria. In our application, we generate a moderate
level of sparsity, aiming to select potentially good proteomic biomarkers
while at the same time controlling the number of false biomarkers identified
from the data.

In what follows we use a robust M-estimate for σ (µ,β), given implicitly
by the solution of

(3) 1

n

n∑
i=1

ρ

(
yi − µ− x⊺

iβ

σ (µ,β)

)
= δ ,

for an even and bounded function ρ and tuning constant δ ∈ (0, 1). Both
ρ and δ need to be chosen jointly in order to obtain robust and consistent
estimators. For more details we refer to Maronna, Martin and Yohai (2006).

Given a fixed penalty parameter λS , minimizing the objective function
(2) is challenging due to its non-convexity and the lack of differentiability
of the elastic net penalty at β = 0. However, since the unpenalized S loss
is continuously differentiable and the elastic net penalty is locally Lipschitz,
the penalized S loss (2) is locally Lipschitz. Thus, following the results in
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6 G.V. COHEN FREUE ET AL.

Clarke (1990), we can derive its generalized gradient and search for a root
that defines a good local optimum of (2). In particular, the generalized
gradient of the penalized S loss is given by
(4)

∇(µ,β)LPS(µ,β) = 2

[
− 1

n

n∑
i=1

ri(µ,β)wi(µ,β)

(
1
xi

)
+

λS

2

(
0

∇βPα(β)

)]
,

where Pα(β) =
1
2(1− α)||β||22 + α||β||1 is the elastic net penalty, ri(µ,β) =

yi − µ− x⊺
iβ are the residulas, and the weights wi(µ,β) are proportional to

σ(µ,β)
ri(µ,β)

ρ′
(
ri(µ,β)
σ(µ,β)

)
.

In order to find a root of the generalized gradient in (4) above, note that
it coincides with the subgradient of the classical weighted elastic net loss,
except that the weights depend on the unknown coefficients (µ,β). This sug-
gests the following iterative procedure: given an initial estimate (µinit,βinit)
and its corresponding M-scale estimate σ(µinit,βinit), obtain an improved
set of parameter estimates by computing a weighted elastic net with weights
wi(µ

init,βinit) as above. Next, compute the corresponding updated weights
and iterate. We refer to this algorithm as iteratively reweighted elastic net
(IRWEN) (see the Supplementary Materials for more details).

2.1. Initial estimator. Ideally, we want to find the global minimum of
the objective function (2) that defines PENSE. However, because of the
lack of convexity of this function, for the above iterations to converge to a
good local optimum (or the global minimum), it is necessary to find a good
starting point for IRWEN.

The challenge of finding initial estimators for the unpenalized S-estimator
of regression has been extensively studied in the literature and many reliable
and fast procedures have been proposed (e.g., Salibián-Barrera and Yohai,
2006; Koller and Stahel, 2017). These strategies rely on constructing data-
driven random starts by fitting the regression model on randomly chosen
subsamples. The idea is that subsamples that do not contain outliers will
provide regression estimators that are good starting points. To maximize the
chance of obtaining a clean starting point, the subsamples are taken with as
few points as possible. However, it is not clear how many points to include in
the random subsamples when the number of explanatory variables exceeds
the sample size. In our application, as well as in many proteomics studies,
the number of patients (n = 37) is already smaller than the number of mea-
sured proteins (p = 81), thus unfortunately previous results on subsampling
methodologies do not directly generalized to our case.

Alfons, Croux and Gelper (2013) proposed to compute a LASSO estimator
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on subsamples of size 3 to initialize the algorithm of their SparseLTS esti-
mator. However, the size of the subsample limits the number of variables
that LASSO can select for the initial estimator. In our problem, starting
the iterations with only 3 proteins in the model may result in an undesir-
ably sparse final model, with the potential loss of relevant biomarkers. Since
increasing the size of the subsamples can considerably increase the compu-
tational time of the algorithm, this strategy may not be feasible in many
modern statistical applications.

Adapting the approaches of Peña and Yohai (1999) and Maronna (2011),
we construct clean subsamples of our proteomics data by removing different
sets of outlying observations. These sets of potential outliers are flagged
using the principal sensitivity components (PSCs), which measure the effect
of each data point on the estimated model. The classical EN estimator is
then computed on each resulting subsample and used as candidate initial
estimators for IRWEN. More details can be found in the Supplementary
Materials.

In most applications the optimal level of penalization is not known in
advance, and λS in (2) is chosen from a grid of K possible penalty values,
λ
(1)
S < λ

(2)
S < . . . < λ

(K)
S , based on the predictive performance of the penal-

ized estimator. Since the number of selected variables (proteins in our case)
can vary greatly among different levels of penalization, fine grids with large
K are usually preferred. In our case, we examine our estimator at K = 100
penalty values to evaluate the contribution of small sets of proteins gradually
incorporated in (or removed from) the selected model. To ease the burden of
computing an initial estimator (or several candidates) for every λ

(k)
S in the

grid, we use a strategy of “warm” starts, in which a local optimum of (2) at
a penalty value in the grid can be used to initiate the iterative algorithm at
adjacent penalty levels.

The “domino effect” exploited by “warm” start algorithms is commonly
used to compute other penalized estimators based on iterative solvers (Fried-
man, Hastie and Tibshirani, 2010; Tomioka, Suzuki and Sugiyama, 2011).
The prevalent method of warm starts for penalized estimators is to start with
a very large penalty value that shrinks all regression coefficients to zero, thus
avoiding the computation of any other initial estimator. However, since the
objective function (2) is not convex, this strategy is no longer guaranteed
to find a good solution for all λ(k)

S in the grid. Thus, we combine “warm”
initial estimates with “cold” initial estimates obtained from EN PSCs to
initiate IRWEN, harnessing the benefits of both strategies. We refer to the
Supplementary Materials for more details.
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8 G.V. COHEN FREUE ET AL.

3. PENSEM: a new penalized MM-estimator. Many applications
where regularized estimators are utilized have relatively few samples. In
particular, proteomics data sets tend to be relatively small due to the costs
associated with their collection. Hence, reducing the sampling variability of
the regression estimators may help lower the threshold over which protein
effects can be detected in linear models like (1).

Following Yohai (1987) we propose to refine the robust PENSE estima-
tor to obtain a penalized elastic net MM-estimator with higher efficiency
(lower variance), which we call PENSEM. This estimator is defined as the
minimizer (µ̂PM , β̂

PM
) of the penalized loss function

(5)

LPM(µ,β) =
1

n

n∑
i=1

ρ2

(
yi − µ− x⊺

iβ

σ̂0

)
+ λM

(
1

2
(1− α)||β||22 + α||β||1

)
,

where the residual scale estimate σ̂0 is fixed, and ρ2 ≤ ρ, the function used
to compute σ̂0. It is easy to see that, as previously discussed for PENSE,
we can use an IRWEN algorithm to find local minima of the penalized M
loss function (5), initialized using the PENSE estimate

(
µ̂PS , β̂

PS
)

. How-
ever, the estimation of the initial residual scale, σ̂0, requires some special
attention.

For datasets with few explanatory variables (i.e, small p relative to the
sample size n), the scale based on the residuals from an S-estimator has been
used to compute MM-estimators. However, Maronna and Yohai (2010) have
noted that this scale estimator usually underestimates the true error scale if
the ratio p/n is high. This problem becomes even more serious in applications
like ours where the sample size (n = 37) is smaller than the number of
explanatory variables (p = 81). Following this observation, Maronna (2011)
adjusts the residual scale estimator of the Ridge-S if its effective degrees of
freedom is larger than 10% of the sample size. Based on the results of our
numerical studies and considering the sparsity of our model, we also compute
PENSEM using an adjusted residual scale estimator σ̂0 = q σ̂(µPS ,βPS).
Further details on the correction factor q and other adjustments suggested
in the literature are given in the Supplementary Materials.

Finally, we need to determine the level of penalization of PENSEM, which
controls the number of variables selected in the final model. In our problem,
this parameter limits the number of potential biomarkers that we migrate
to the validation stage. Although both PENSE and PENSEM are defined
using the same penalty function, the levels of penalization implied by specific
values of λM and λS are not equivalent since the loss functions are generally
different. Thus, the optimum penalty parameter λM for PENSEM is also
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chosen from a grid of candidate values which might be different from the
grid used to determine λS . To ease the computational burden, the initial
estimator to optimize the penalized M loss function (5) for any λM is fixed
at the PENSE estimate

(
µ̂PS , β̂

PS
)

obtained with the penalty level λS

selected when computing PENSE.

4. Properties. In this Section we study some important robustness and
statistical properties of the proposed estimators.

4.1. Robustness. Technical challenges with sample preparation, and pa-
tients with atypical molecular profiles mean that the potential presence of
outliers is an important concern when working with proteomics datasets.
One measure of robustness of an estimator against potential outliers is its
(finite-sample) breakdown point (Donoho and Huber, 1982), which in our
case corresponds to the largest proportion of samples in the data set that
could have been contaminated arbitrarily and still result in a bounded re-
gression estimator. The larger this proportion, the “safer” a robust regres-
sion estimator is, in the sense of not being completely determined by a small
number of atypical patients in the training set.

Another interest in the cardiac allograft vasculopathy study is the detec-
tion of potentially atypical samples in the data. Outliers in regression models
like the one we use in our study can be flagged by considering the residuals
from the fitted model. This approach is expected to work well when the
estimated parameters have not been affected by the outliers one is trying to
detect. Estimators with high breakdown point thus provide reliable outlier
detection methods. We illustrate this successfully in Section 6 below.

Since penalized optimization problems are equivalent to constrained ones,
one may conjecture that regularized estimators are “automatically” robust,
in the sense that they are necessarily constrained and thus bounded. How-
ever, this is generally not true, since the bound on the equivalent constrained
optimization problem depends on the sample, and thus may grow to infinity
when outliers are present. To see this in the case of the LASSO estimator,
let β∗ be a minimizer of the penalized sum of squared residuals objective
function:

∑n
i=1(yi−x⊺

iβ)
2+λ0 ∥β∥1, for a fixed λ0 > 0 (to simplify the pre-

sentation we assume that the data are standardized so that no intercept is
present in the model). Following the results in Osborne, Presnell and Turlach
(2000), we have ∥β∗∥1 = C0 = (r∗)⊺Xβ∗/λ0, where r∗ = (r∗1, . . . , r

∗
n)

⊺ is the
vector of residuals for β∗. If β∗ is different from the usual least squares
estimator, it follows that β∗ also minimizes

∑n
i=1(yi − x⊺

iβ)
2 subject to

∥β∥1 ≤ C0 (see Osborne, Presnell and Turlach (2000)). It is easy to see
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10 G.V. COHEN FREUE ET AL.

that, since the bound C0 depends on the sample, it can become arbitrarily
large when outliers are present in the data.

The formal definition of the finite-sample breakdown point of an estimator
is as follows. Let Z = (z1, . . . , zn)

⊺ be a fixed dataset, where zi = (yi,x
⊺
i )

⊺.
The replacement finite-sample breakdown point (FBP), ϵ∗(θ̂;Z), of an esti-
mator θ̂ is defined as

(6) ϵ∗(θ̂;Z) = max

{
m

n
: sup
Zm∈Zm

∥θ̂(Zm)∥ <∞
}
,

where the set Zm contains all possible datasets Zm with 0 < m < n of
the original n observations replaced by arbitrary values (Donoho and Hu-
ber, 1982). In the proteomic case study analyzed in this paper, n = 37
corresponds to the number of independent plasma samples from cardiac
transplant recipients.

The following theorem shows that the PENSE estimator retains the high-
breakdown point of the parent unpenalized S-estimator. More specifically,
the breakdown point of PENSE is at least min(δ, 1 − δ), where δ is the
right-hand side of the equation defining the residual scale M-estimator (3).
In other words, if we compute PENSE with δ = 0.5, as long as less than
half of the patients in our study are representative of the target population,
our robust estimator will not be unduly affected by potential outliers in the
data.

Theorem 4.1. For a dataset of size n, let m(δ) ∈ N be the largest integer
smaller than nmin(δ, 1− δ), where δ is the right-hand side of (3). Then, the
finite-sample breakdown point of the PENSE estimator (µ̂PS , β̂

PS
) satisfies

m(δ)

n
≤ ϵ∗

(
µ̂PS , β̂

PS
;Z

)
≤ δ .

A proof of the theorem is given in the Supplementary Materials. More-
over, the proof in Smucler and Yohai (2017) can be used to show that the
breakdown point of the elastic net penalized MM-estimator is at least as high
as the breakdown point of the initial scale estimator. Therefore, PENSEM
retains the high breakdown point of PENSE.

4.2. Consistency. Consistency is a desired statistical property of any es-
timator that in a sense ensures better estimates of the true model parameters
as more data is collected. In addition to being robust, we prove that the co-
efficients estimated by PENSE and PENSEM converge to the true values
when both the number of observations n and the number of predictors p
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grow to infinity (Theorem 3.2 of the Supplementary Material). Importantly,
our result does not make any moment assumptions on the distribution of
the errors, and hence guarantees high-quality estimations in linear mod-
els with large sample sizes, even in cases with extremely heavy-tailed error
distributions that could cause serious outlying observations. However, our
proof of consistency requires that p < n, which may not be the case for
many available datasets. In particular, in our proteomic biomarkers study
the number of patients (n) is 37 and the number of measured proteins (p) is
81. Similarly, the number samples available may remain limited in many ap-
plications. Thus, it is important to complement these theoretical asymptotic
results with extensive simulation studies.

5. Simulation Studies. Before we discuss our findings on the cardiac
allograft vasculopathy study using PENSE and PENSEM in Section 6, we
report here the results of a simulation study to further examine the proper-
ties of our estimators and compare their performance against that of other
published robust and/or penalized estimators in various settings.

We consider data following a linear regression model of the form

yi = x⊺
iβ + εi, εi ∼ N(0, σ2), 1, . . . , n ,

and four different combinations of the number of observations (n), the num-
ber of predictors (p), the correlation structure of the explanatory variables
x, and the true regression coefficients (β) (see Section 5.2 below).

We compare our PENSE and PENSEM estimators1 against the classical
LASSO and EN, as well as the robust regularized estimators SparseLTS
(Alfons, Croux and Gelper, 2013) and the recently published MMLASSO
(Smucler and Yohai, 2017), which are robust versions of LASSO. PENSE
and PENSEM methods are computed using Tukey’s Bisquare loss, given by

ρc(t) = min
{
1, 1− (1− (t/c)2)3

}
.

Whenever possible, we also include the oracle OLS and MM estimators,
which only estimate the coefficients of the true active set of predictors. For
SparseLTS, we use the implementation available in the R package robustHD
(Alfons, 2016), while for MMLASSO we use the functions available in the
authors’ github repository2. Where possible, the robust estimators are tuned
to achieve a 25% breakdown point.

1available at https://cran.r-project.org/package=pense
2https://github.com/esmucler/mmlasso
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5.1. The Penalty Parameters. The level of penalization λS is chosen from
a grid of 100 logarithmically equispaced values to optimize PENSE’s predic-
tion performance estimated via 10-fold cross-validation (CV). The training
sample might contain contaminated observations, thus we use the robust τ -
scale (Yohai and Zamar, 1988) of all n out-of-sample predictions to measure
prediction performance instead of the usual root mean squared prediction
error. Similarly, we compute PENSEM on a grid of 100 logarithmically eq-
uispaced values for λM , always starting from the optimum λ∗

S chosen from
the previous grid. The optimal λ∗

M is again chosen by 10-fold CV using the
robust τ -scale.

The balance between the L1- and the L2- penalties as controlled by the
parameter α ∈ [0, 1] is being fixed throughout the selection of λS and λM .
Different strategies can be used to select the appropriate α parameter to
compute PENSE(M). In many applications, the user selects this value based
on the desired level of sparsity of the resulting model. For example, in the
proteomics study analyzed in this paper, the identified potential biomarkers
were validated by an independent and more precise technology. Thus, we
chose a moderate level of sparsity to control the risk of missing promising
markers and the cost of migrating irrelevant ones to the validation phase. In
other contexts, one can compute the estimators for several different values of
α and choose the value α∗ that yields the best CV prediction performance.
For a comprehensive discussion on this topic we refer to Zou and Hastie
(2005).

As it was noted for the classical naïve EN estimator (Zou and Hastie,
2005), PENSE and PENSEM suffer from a “double” penalization due to
the combination of the L1- and the L2- penalties in the EN penalty. To
achieve better prediction performance while preserving the variable selection
properties of the EN penalty, we correct both PENSE and PENSEM as√

1 + 1/2(1− α∗)λ∗β̂. The intercept is corrected accordingly to maintain
centered weighted residuals.

5.2. Simulation Settings. To demonstrate the benefits of the elastic net
over the L1 penalty, we include two simulation settings from Zou and Hastie
(2005) and Zou and Zhang (2009). In these settings the correlation among
the predictors with non-zero regression coefficient is moderate to high. We
further extend the settings in Zou and Hastie (2005) to a more challenging
setting with higher dimensions, having more active predictors than observa-
tions. We also assess the performance of the proposed estimators in a very
sparse simulation setting with no correlation among the active predictors,
which may benefit L1-penalized estimators. The details are as follows.
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(a) The first simulation setting is the same as example (d) in Zou and Hastie
(2005), in which the number of predictors p = 40 is smaller than the
sample size n = 50; σ = 15 and the vector of true regression coefficients
is given by

β = (3, . . . , 3︸ ︷︷ ︸
15

, 0, . . . , 0︸ ︷︷ ︸
25

)⊺.

The first 15 predictors are generated from a latent variable model with
three latent variables

xj = z⌈j/5⌉ + δj where zl ∼ N(0, 1) , δj ∼ N(0, 0.012) ,

for j = 1, . . . , 15, l = 1, 2, 3, and the remaining 25 predictors are i.i.d.
from a standard Normal distribution: xj ∼ N(0, 1), j = 16, . . . , 40.

(b) In the second simulation setting we increase the number of predictors
to p = 400, which now exceeds the number of observations n = 50. The
error term is generated as in setting (a) and the vector of true regression
coefficients is given by

β = (3, . . . , 3︸ ︷︷ ︸
60

, 0, . . . , 0︸ ︷︷ ︸
340

)⊺.

The latent variable model is still based on three factors, but each factor
is associated with 20 predictors, i.e.,

xj = z⌈j/20⌉ + δj where zl ∼ N(0, 1) and δj ∼ N(0, 0.012) ,

for j = 1, . . . , 60, l = 1, 2, 3. The other 340 predictors are i.i.d. from a
standard Normal distribution, xj ∼ N(0, 1), j = 61, . . . , 400.

(c) The third simulation setting is from example 2 in Zou and Zhang (2009),
in which n = 100, p = 81, σ = 6, and the vector of true regression
coefficients is given by

β = (3, . . . , 3︸ ︷︷ ︸
27

, 0, . . . , 0︸ ︷︷ ︸
54

)⊺.

The predictors are generated from a multivariate Normal distribution
x ∼ Np(0,Σ) with covariance structure

Σjk = 0.75|j−k| j, k = 1, . . . , 81.

(d) The final setting has a large number of predictors with p = 995, a
moderate sample size of n = 100, and a lower standard deviation of
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14 G.V. COHEN FREUE ET AL.

the error term σ = 1. Of these 995 predictors, 15 are active and their
raw coefficients, γl, l = 1, . . . , 15, are sampled randomly from a Uniform
distribution on the 15-dimensional unit sphere. The indices of the active
coefficient are equally spaced at j = 1, 72, . . . , 995:

β =
√
4(γ1, 0, . . . , 0︸ ︷︷ ︸

71

, γ2, 0, . . . , 0, γ14, 0, . . . , 0︸ ︷︷ ︸
71

, γ15)
⊺.

The predictors are generated from a multivariate Normal distribution
x ∼ Np(0,Σ) with covariance structure

Σjk = 0.5|j−k| j, k = 1, . . . , 1000

and the scaling of the coefficient vector gives a signal-to-noise ratio of 4.

The resistance of the estimators to contaminated observations is assessed
by introducing contamination in the first m = ⌊ϵn⌋ observations (xi, yi)
according to the model used in Maronna (2011). Leverage points are in-
troduced by changing the predictors xi of the contaminated observations
to

xi ← x̃i = ηi +
klev√

a⊺Σ−1a
a, i = 1, . . . ,m,

where ηi ∼ Np(0, 0.1
2Ip) and a = ã − 1

p ã
⊺1p with elements of ã uniformly

distributed between -1 and 1, ãj ∼ U(−1, 1), j = 1, . . . , p. The distance in
the direction most influential on the estimator is thus controlled by param-
eter klev.

In addition to changing the predictors to generate leverage points, we
also contaminate the observations in the response by altering the regression
coefficient

yi = x̃iβ̃ with β̃j =

{
βj(1 + kslo) if βj ̸= 0

kslo∥β∥∞ o.w.
, i = 1, . . . ,m.

If the parameter kslo is 0, no vertical outliers are introduced.
The parameters klev and kslo control the position of the contaminated

observations. To fully evaluate the robustness of the estimators different
values for these parameters are considered. Preliminary analysis showed that
the effect on all considered estimators was almost the same for any klev > 1,
hence we fixed the distance of leverage points at klev = 2. The position of the
vertical outliers has a more varying influence on the estimators. Therefore,
in each simulation setting we consider a grid of 15 logarithmically spaced
values for kslo between 1 and 500.
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To measure prediction performance of the estimators we generate a valida-
tion set of observations (x∗

i , y
∗
i ), i = 1, . . . , n∗, with n∗ = 1000 and without

contamination according to the respective simulation settings. Using this
independent validation set, we compute the root mean squared prediction
error (RMSPE) for an estimate (µ̂, β̂), i.e.,

RMSPE =

√√√√ 1

n∗

n∗∑
i=1

(y∗i − x∗
i
⊺β̂ − µ̂)2.

The model selection performance is assessed by the sensitivity (SENS)
and specificity (SPEC) of the estimated coefficient vector β̂ defined by

SENS =
TP

TP + FN =
#{j : βj ̸= 0 ∧ β̂j ̸= 0}

#{j : βj ̸= 0}

SPEC =
TN

TN + FP =
#{j : βj = 0 ∧ β̂j = 0}

#{j : βj = 0}
,

where TP, FP, TN, and FN stand for true and false positive, and true and
false negative, respectively.

For the uncontaminated cases, these measures provide a good picture of
the overall performance of the estimators. When contamination is introduced
in the training set, we summarize the performance over the entire grid of
vertical outlier positions, k(l)slo, l = 1, . . . , 15, by the area under the curve of
RMSPE values, RMSPEcont. Let’s denote the estimate at k(l)slo by (µ̂(l), β̂

(l)
),

then the overall RMSPE under contamination is

RMSPEcont =
1

k
(15)
slo − k

(1)
slo

∑
l=2,...,15

k
(l)
slo − k

(l−1)
slo

2

(
RMSPE(µ̂(l−1), β̂

(l−1)
)

+ RMSPE(µ̂(l), β̂
(l)
)

)
.

As an example, Figure 1 shows the curve of RMSPE over kslo from one
replication of setting (a) and 10% contamination. It can be seen that the
worst case performance might be at a different kslo value for each estimator
and the area under the curve reflects the overall performance of the estima-
tor under the different contamination settings examined. We use the same
method to summarize the sensitivity and specificity under contamination,
denoted by SENScont and SPECcont, respectively. Each contamination set-
ting is replicated 200 times, creating 200 of these curves, and corresponding
areas, for each simulation setting.
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Figure 1: Root mean squared prediction error of different estimators over a grid of kslo
values ranging from 1 to 500 with 10% contamination under simulation setting (a).

For each simulation setting, we compute PENSE(M) as well as the clas-
sical EN for several values of α. In the results however, we only present the
PENSE(M) estimators corresponding to the α∗ with the smallest average
cross-validated RMSPEcont. Similarly, we only show the classical EN with
smallest average cross-validated RMSPE on the uncontaminated training
data.

5.3. Simulation Results. Setting (a): The prediction performance mea-
sures of PENSE(M) and those of the competing estimators over 200 replica-
tions for simulation setting (a) are shown in Figure 2. The solid dots in the
plot represent the average values and the error bars mark the 5% and 95%
quantiles of the RMSPE (no contamination, left plot) and the RMSPEcont
(10% contamination in the training set, right plot). In this simulation set-
ting we show the classical EN for α∗ = 0.7 and PENSE(M) for α∗ = 0.9,
which were both chosen based on the CV performance of each estimator.

Setting (a) is tailored to favor the elastic net penalty over the L1-penalty
due to the extreme grouping of the predictors. Without contamination, the
classical EN estimator yields, on average, better prediction performance than
LASSO and the oracle OLS estimator. The problem with the L1-penalty of
LASSO is that only a single predictor is selected within each group. However,
if the penalty parameter λ is small enough, this single predictor can almost
fully capture the effect of the entire group. Thus, the benefit of the elastic
net penalty is only marginally visible in the prediction performance.

Among the robust estimators, PENSEM achieves the smallest RMSPE
under no contamination as well as overall under contamination, even out-
performing the robust oracle estimators. However, as observed for the classi-
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Figure 2: Average prediction performance of different estimators in simulation setting (a).
The error bars extend from the 5% to the 95% quantile. For the uncontaminated
case we report the RMSPE. For training data with 10% contamination we show
the overall measure RMSPEcont over a grid of kslo from 1 to 500. Classical EN uses
α∗ = 0.7, while PENSE(M) is using α∗ = 0.9.

cal estimators, the difference between the robust regularized EN estimators
(PENSE and PENSEM) and the MMLASSO is small.

The strength of the elastic net penalty in this setting becomes more no-
ticeable in the model selection performance in Figure 3. Regardless if the
data is contaminated, all of the LASSO-based estimators only pick a sin-
gle coefficient per group, while the EN estimators consistently select whole
groups. Thus, the sensitivity of the LASSO methods is weak compared to
that of elastic net methods. For the classical EN and PENSE(M) estima-
tors, the selection of relevant variables brings also some of the irrelevant
ones shown by a slight drop in specificity.

Setting (b): In this setting, the difference between LASSO and EN esti-
mators is even more pronounced as shown in Figure 4. In addition, the
oracle estimates cannot be computed since the number of active predic-
tors is larger than the number of observations. The classical EN as well
as PENSE both achieve the best cross-validated prediction performance for
α∗ = 0.9, reflecting the sparsity of this setting. PENSEM shows again the
best prediction performance of the robust estimators. It is clearly visible
that the M-step reduces variability in the prediction performance. As for
model selection (Figure 5), we observe again large differences between the
sensitivities of LASSO-type and EN-type estimators. The former only select
a single predictor from each group. In contrast to the previous setting, how-
ever, PENSE(M) and classical EN have a higher specificity in this setting
than in setting (a) due to the large number of irrelevant predictors. Under
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Figure 3: Average specificity and sensitivity of different estimators in simulation set-
ting (a). The error bars extend from the 5% to the 95% quantile. For training
data with 10% contamination we show the area under the curve (SENScont and
SPECcont) over a grid of kslo from 1 to 500. Classical EN uses α∗ = 0.7, while
PENSE(M) is using α∗ = 0.9.

contamination, PENSE selects all 60 active predictors 88% of the time and
on average selects only 23 of the 340 irrelevant predictors. In the uncontam-
inated case the model selection of PENSE is on average even outperforming
the classical EN.

Setting (c): This is the last setting where the elastic net penalty should
have an advantage over the L1 penalty. In terms of prediction performance
(Figure 6), PENSE and PENSEM (with α∗ = 0.7) perform, on average, al-
most as well as the robust oracle estimate and notably better than the other
robust estimators based on an L1 penalty. It is clearly visible that the L1-
based estimators have difficulty addressing the moderate to high correlation
among active predictors in this setting. For model selection, as shown in
Figure 7, the classic EN and PENSE(M) again outperform L1-based meth-
ods, which not surprisingly comes at the cost of a drop in their specificity.
PENSE selects around 17 of the 54 irrelevant predictors on average under
contamination, while PENSEM selects roughly 21. SparseLTS seems to gen-
erally select smaller models with decent accuracy, while MMLASSO chooses
as many noise predictors as PENSE, but is less sensitive.

Setting (d): The results of this very sparse setting are shown in Figure 8.
Not surprisingly, the best CV performance for PENSE(M) is achieved with
an L1-penalty (α∗ = 1). This example illustrates the flexibility of the EN
penalty, which ranges from the L1 to the L2 penalties, thus being adjustable
to different degrees of sparsity. As expected, PENSEM results are very sim-

imsart-aoas ver. 2014/10/16 file: PENSE_manuscript_AOAS.tex date: February 28, 2018



PENSE 19

●

●

●
●

●

●

●

●
●

●

No contamination 10% cont.

LA
SS

O EN

Sp
ar

se
LT

S

M
M

LA
SS

O

PE
N

SE

PE
N

SE
M

Sp
ar

se
LT

S

M
M

LA
SS

O

PE
N

SE

PE
N

SE
M

20

30

40

50
R

M
S

P
E

● ● ● ● ●

non−robust PENSE PENSEM MMLASSO SparseLTS

Figure 4: Average prediction performance of different estimators in simulation setting (b).
The error bars extend from the 5% to the 95% quantile. For the uncontaminated
case we report the RMSPE. For training data with 10% contamination we show
the overall measure RMSPEcont over a grid of kslo from 1 to 500. Classical EN and
PENSE(M) are both using α∗ = 0.9. The oracle estimates cannot be computed in
this setting because there are more active predictors than observations.

ilar to MMLASSO, with observed differences coming from the initial esti-
mators used to initialize the M-steps and the algorithms used to optimize
the associated objective functions. MMLASSO has a slightly smaller aver-
age RMSPE than PENSEM in the uncontaminated case. However, under
contamination, PENSEM shows a little better average performance and less
variation. When examining model selection as presented in Figure 9 we can
observe that all methods struggle to identify all 15 active covariates. This
can be mainly attributed to the fact that coefficients are sampled on the
unit sphere which results in some coefficients being very small compared to
others. PENSEM generally exhibits less variation in sensitivity and has a
very similar average as MMLASSO in both measures under contamination.

In summary, these simulation results show that PENSE and PENSEM are
performing competitively compared to other robust regularized estimators
of regression. The flexible elastic net penalty makes PENSE(M) applicable
to a broad range of settings and clearly outperforms L1-based estimates if
important predictors are correlated. Especially in settings with large number
of relevant correlated covariates relative to the sample size, the elastic net
penalty is beneficial for both prediction performance and identification of
important predictors.

6. Biomarkers of Cardiac Allograft Vasculopathy. In this Sec-
tion, we use PENSEM to select potential plasma biomarkers of cardiac al-
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Figure 5: Average specificity and sensitivity of different estimators in simulation set-
ting (b). The error bars extend from the 5% to the 95% quantile. For training
data with 10% contamination we show the area under the curve (SENScont and
SPECcont) over a grid of kslo from 1 to 500. Classical EN and PENSE(M) are both
using α∗ = 0.9.

lograft vasculopathy (CAV), a major complication suffered by 50% of car-
diac transplant recipients beyond the first year after transplantation. The
most typical screening and diagnosis of CAV requires the examination of
the coronary arteries that supply oxygenated blood to the heart. Despite its
invasiveness, cost, and associated risks of complications, to date, coronary
angiography remains the most widely used tool to assess the narrowing and
stenosis of the coronary arteries (Schmauss and Weis, 2008). The identifica-
tion of plasma biomarkers of CAV can result in the development of a simple
blood test to diagnose and monitor this condition significantly improving
current patient care options.

The Biomarkers in Transplantation (BiT) initiative has collected plasma
samples from a cohort of patients who received a heart transplant at St.
Paul’s Hospital, Vancouver, British Columbia, and consented to be enrolled
in the study. Around one year after transplantation, some of these patients
presented signs of coronary artery narrowing, measured by the stenosis of
the left anterior descending (LAD) artery, as an indicator of CAV develop-
ment. To identify potential biomarkers of this condition, protein levels from
37 plasma samples, collected at 1 year after transplantation, were measured
using isobaric tags for relative and absolute quantitation (iTRAQ) technol-
ogy. This mass spectrometry technique enabled the simultaneous identifica-
tion and quantification of multiple proteins present in the samples. A full
description of this proteomics study is given by Lin et al. (2013), which de-
veloped a proteomic classifier of CAV using a preliminary univariate robust
screening of proteins and a classical EN classification method. PENSE and

imsart-aoas ver. 2014/10/16 file: PENSE_manuscript_AOAS.tex date: February 28, 2018



PENSE 21

●

●

●●

●

●

●
●

●
●

●

●

●

No contamination 10% cont.

O
ra

cl
e 

(L
S)

LA
SS

O EN

O
ra

cl
e 

(M
M

)

Sp
ar

se
LT

S

M
M

LA
SS

O

PE
N

SE

PE
N

SE
M

O
ra

cl
e 

(M
M

)

Sp
ar

se
LT

S

M
M

LA
SS

O

PE
N

SE

PE
N

SE
M

6

8

10

12
R

M
S

P
E

● ● ● ● ● ●

non−robust PENSE PENSEM Oracle (MM) MMLASSO SparseLTS

Figure 6: Average prediction performance of different estimators in simulation setting (c).
The error bars extend from the 5% to the 95% quantile. For the uncontaminated
case we report the RMSPE. For training data with 10% contamination we show
the overall measure RMSPEcont over a grid of kslo from 1 to 500. Classical EN and
PENSE(M) are both using α∗ = 0.7.

PENSEM combine robustness, variable selection and modelling in a single
step, taking full advantage of the multivariate nature of the data that can
result in the identification of new potential markers of CAV and a better
prediction.

We validate our results on an independent set of 52 patients collected
by BiT in the second phase of their study. For the validation phase, the
plasma samples collected around one year after transplantation were an-
alyzed with a much more sensitive proteomics technology, called Multiple
Reaction Monitoring (MRM), which allows the quantification of targeted
proteins (Cohen Freue and Borchers, 2012; Domanski et al., 2012). Since
the use of MRM requires the development of stable isotope-labeled stan-
dard peptides to measure the targeted proteins, only a subset of candidate
proteins is usually available in this validation phase. The stenosis of the
LAD artery was measured equally in all patients from the discovery and
test cohorts, using cardiac angiography.

Although hundreds of proteins were detected and measured by iTRAQ in
most patient samples, only a few proteins are expected to be associated with
the observed artery obstruction, resulting in a sparse regression model (i.e.,
most regression coefficients equal to zero). Thus, we use PENSE to select a
candidate set of relevant proteins among the 81 proteins that were detected
in all samples and PENSEM to refine this set, both tuned to achieve a 25%
breakdown point. In this application we induce a moderate level of sparsity
using α∗ = 0.6, aiming to control the number of potential false biomarkers
identified and potential good biomarkers missed in this study. As explained
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Figure 7: Average specificity and sensitivity of different estimators in simulation set-
ting (c). The error bars extend from the 5% to the 95% quantile. For training
data with 10% contamination we show the area under the curve (SENScont and
SPECcont) over a grid of kslo from 1 to 500. Classical EN and PENSE(M) are both
using α∗ = 0.7.

in Section 5.1, the selection of the level of penalization is based on a robust
measure of the size of the prediction errors estimated by 10-fold CV. To
make this selection more stable, we repeat this estimation 200 times over
the full grid of penalty values and select λ∗

S as the maximum λ such that the
median estimated prediction error at this value is within 1.5 MAD of the
minimum median error across the grid. At this selected level of penalization,
PENSE identifies 35 potential markers to predict the diameter of the LAD
artery and thus assess the level of obstruction in that artery.

To refine the selection given by PENSE, PENSEM is computed over a grid
of lambda values, using the selected PENSE as an initial estimator, and se-
lecting the optimal level of penalization (λ∗

M ) with the same criteria used
to select λ∗

S . PENSEM selects 15 out of the 35 potential markers selected
by PENSE to predict the diameter of the LAD artery. Analogously, using
the “one standard error” (1SE) rule such that the CV error is within one
standard error of that of the minimum, the classical EN estimator (using the
same α parameter) does not select any variable (i.e., the intercept-only model
is selected). Figure 10 illustrates PENSEM’s estimates of the regression coef-
ficients for different values of λM (i.e., PENSEM’s regularization path), high-
lighting in blue the coefficients selected at the optimal level of penalization
chosen (i.e., λ∗

M represented by the vertical dashed line). The names of the
selected markers are given in Table 1. Interestingly, many of these markers
were previously related to CAV, including C4B/C4A, APOE, AMBP, and
SHBG (Lin et al., 2013). However, further analysis of this dataset using our
estimators allows the identification of new potential markers, including some
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Figure 8: Average prediction performance of different estimators in simulation setting (d).
The error bars extend from the 5% to the 95% quantile. For the uncontaminated
case we report the RMSPE. For training data with 10% contamination we show
the overall measure RMSPEcont over a grid of kslo from 1 to 500. Classical EN uses
α∗ = 0.9 while PENSE(M) is fitted with α∗ = 1.

additional proteins of the coagulation and complement cascades (F10 and
CFB, respectively), another apolipoprotein (APOC2), and new homoglobin
subunits (HBD, HBA, HBZ), among other biologically relevant proteins.
Overall, results illustrate the involvement of complex mechanisms of CAV,
such as complement system activation and regulation, immune-recognition,
inflammation, and apoptosis related mechanisms among others.

An additional advantage of using a robust estimator to estimate the re-
gression coefficients is that outlying observations can be flagged by looking
at the residuals of each point versus their fitted values (see Figure 11). Based
on the results of the angiography, no obstruction was detected in the LAD
artery of the four patients in the lower part of the figure (B-514, B-584,
B-527 and B-561 measured in weeks 51 and 52 after transplant as indicated
by the sample labels). However, a second measurement of the LAD of the
last three patients using a more accurate technique (IVUS) indicates that
their arteries present a mild stenosis with about 16% area reduction, as sug-
gested by PENSEM’s predictions (negative residuals). Similarly, the stenosis
of B-381 might have been overestimated by the angiography performed at
week 51 (91% area reduction) compared to the results of the IVUS test (79%
area reduction). Other outlying measurements may be present in the iTRAQ
protein measurements of these patient samples highlighted by PENSEM.

The performance of the estimators is initially evaluated by 200 replica-
tions of 10-folds cross-validations and compared to that of the classical EN
and some robust estimators (see Table 2). An α value of 0.6 is used for all
estimators based on the elastic net penalty. In terms of prediction, all es-
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Figure 9: Average specificity and sensitivity of different estimators in simulation set-
ting (d). The error bars extend from the 5% to the 95% quantile. For training
data with 10% contamination we show the area under the curve (SENScont and
SPECcont) over a grid of kslo from 1 to 500. Classical EN uses α∗ = 0.9 while
PENSE(M) is fitted with α∗ = 1.

timators perform similarly, with PENSEM showing, on average, a slightly
better performance.

A subset of 6 proteins (marked with asterisk in Table 1 and represented
with solid lines in Figure 10) out the 15 selected proteins, were successfully
developed and measured with MRM on all 37 discovery samples, as well
as 52 new test samples. Thus, to validate the results of PENSEM’s protein
selection, we train and test a model based on these independent and more
precise protein measurements. We use an MM-estimator to train the model
based on the 6 available proteins since no additional selection is required at
this stage. The MM-estimator is conceptually equivalent to PENSEM when
the penalty parameters λS and λM are set to 0.

The model is trained on the same 37 training plasma samples, except
that the protein levels were now measured by MRM instead of iTRAQ. In-
terestingly, the MM-estimator flags the samples B-381W51, B527W51 and
B-561W52 as outlying even when proteins are measured by MRM. Some of
the other samples flagged by PENSEM as outliers are diagnosed as border-
line outliers by the MM-estimator.

The 52 test samples are from new patients, not involved in any phase
of the discovery, so they constitute an independent test set to validate our
estimated model. Among these test samples, 12 are flagged as outlying.
Since robust estimators are not trained to predict the response of outlying
samples we exclude these samples to estimate the performance of our robust
estimated model. The predicted response of the remaining 40 test samples
is used to classify the disease status of the test patients.
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Figure 10: PENSEM’s regularization path. The regularization path illustrates how the
estimated coefficients shrink at different levels of penalization. The optimal level of
penalization λ∗

M is represented by the vertical dashed line. The path of the variables
selected at this level of penalization are highlighted in blue. Solid lines are used for
the coefficients of the proteins available in the MRM test set. The numbers in the
labels correspond to in-house protein IDs.

In clinical practice, a percentage of diameter stenosis below 20 suggests
that the patient is not suffering from CAV, and a percentage above 40 is
an indication of CAV. To have enough samples in both groups, we use a
middle cut-off of 30 to classify patients into CAV and non-CAV based on
our predicted percentage of diameter stenosis. Training a model based on 6
out of the 15 proteins selected by PENSEM and using an MM-estimator,
we can predict the percentage of diameter stenosis with sufficient accuracy
to distinguish CAV from non-CAV test patients achieving an AUC of 0.85.

Overall, results demonstrate the ability of PENSEM to identify promising
biomarkers of CAV, some of which could be migrated to a more sensitive
and cost-effective platform (MRM) to validate the model in an external
cohort of patients, without antibody dependencies. While the migration of
proteins is in general a challenging step in a biomarkers pipeline, our model
preserves the accuracy in predicting the percentage of diameter stenosis in
new test samples. The plasma proteomic biomarkers of CAV selected by
PENSEM may offer a relevant post-transplant monitoring tool to effectively
guide clinical care. Our robust PENSE and PENSEM estimators provide a
reference for a wide range of other biomarker studies and the analysis of
other complex datasets.
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Table 1
Potential biomarkers of CAV identified by PENSEM. A validation Multiple Reaction

Monitoring (MRM) assay was developed for the proteins identified with an asterisk. The
first column shows an in-house protein ID used to match proteins from different datasets.

Protein ID Gene Symbol Protein Name

3 C4B/C4A* Complement C4-B/C4-A
13 CFB Complement factor B
30 F2 Prothrombin (Fragment)
42 APOE* Apolipoprotein E
45 AMBP* Protein AMBP
46 ECM1 Extracellular matrix protein 1
59 ITIH3 Inter-alpha-trypsin inhibitor heavy chain H3
68 SHBG* Sex hormone-binding globulin
69 SERPINF1 Pigment epithelium-derived factor
98 PROS1* Vitamin K-dependent protein S

101 F10 Coagulation factor X
116 APOC2* Apolipoprotein C-II
139 HBD Hemoglobin subunit delta
141 LCAT Phosphatidylcholine-sterol acyltransferase
298 HBA2;HBA1;HBZ Hemoglobin subunit alpha/zeta

Table 2
Mean and standard deviation (SD) of the prediction τ -scales.

Lasso EN PENSE PENSEM MMLasso SparseLTS

Mean 17.20 17.17 17.53 16.99 18.20 18.07
SD 1.58 1.47 1.53 1.30 1.74 1.45

7. Conclusions. In this paper we propose regularized robust estimators
with an elastic net penalty, which we call PENSE and PENSEM. The first
one is a penalized version of an S-estimator, while the second one corresponds
to a penalized high-breakdown M-estimator, which generally results in an
increase of efficiency for the parameter estimates.

We show that these estimators retain the robustness properties of their
un-penalized counterparts (high breakdown point and consistency), which
makes them very useful when one may have outlying or other atypical obser-
vations in the data. At the same time, our numerical experiments show that
PENSE and PENSEM also inherit the prediction and model selection prop-
erties of the elastic net penalty. In particular, highly correlated explanatory
variables enter or leave the model in groups, unlike what is observed with
the L1-penalty of LASSO.

In addition, we propose an efficient algorithm to compute both PENSE
and PENSEM that works very well in practice. Computing regression es-
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Figure 11: Patients flagged by PENSEM as outlying based on 15 proteins selected using
iTRAQ data in the discovery phase. The blue dashed lines represent ±2 times the
robust τ -scale of the residuals.

timators with good robustness properties is computationally very costly
because the loss functions that need to be optimized to compute high-
breakdown point robust estimators are necessarily non-convex. Moreover,
the presence of a non-differentiable penalty term for the penalized estimators
increases their computational difficulty. Our algorithm relies on an iterative
procedure derived from the first-order conditions of the optimization prob-
lem that defines the penalized estimators. These iterations are initialized
from a relatively small number of robust starting values that are constructed
following the ideas of Peña and Yohai (Peña and Yohai, 1999).

A very important part of any practical use of penalized estimators is
choosing an “optimal” value for the penalty term. Although cross-validation
is a very popular method to do this, in our case we need to be concerned
with the possibility of having outliers or other atypical observations in our
data, which may affect the estimated prediction error. Following other pro-
posals in the literature we use a robust scale estimator of the prediction
errors obtained via cross-validation instead of the mean squared prediction
error. An implementation in R of our algorithm (including the robust cross-
validation step) is publicly available from CRAN in an R-package called
“pense” (https://cran.r-project.org/package=pense).

Finally, we use PENSE and PENSEM to study the association between
hundreds of plasma protein levels and a measure of artery obstruction on
cardiac transplant recipients. Our robust estimators identify new poten-
tially relevant biomarkers that are not found with non-robust alternatives.
Moreover, the analysis based on our robust penalized estimators flags eight
patients with suspiciously atypical artery obstruction values. Later mea-
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surements with more accurate techniques of the artery obstruction of four of
these patients confirm that the original values were inaccurate. Importantly,
a model based on most of the proteins selected by PENSEM is validated in
a new set of 52 test samples, achieving an AUC of 0.85 when classifying 40
non-outlying samples.

Overall, our robust PENSE and PENSEM estimators, as well as the com-
putational methodologies proposed in this study advance the current knowl-
edge of robust regularized regression estimators and provide flexible and
computationally feasible robust estimation for complex and large datasets.
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